ES/EC/IB 343 CIRCULAR ECONOMY: FROM MAKE-MAKE-WASTE TO A VISIONARY SYSTEM
WITHIN PLANETARY BOUNDARIES IN A GLOBAL AND EUROPEAN CONTEXT
IES Abroad Vienna

DESCRIPTION:
In 2050, we live well, within the planet’s ecological limits. Our prosperity and healthy environment stem from an innovative, circular economy where nothing is wasted and where natural resources are managed sustainably, and biodiversity is protected, valued and restored in ways that enhance our society’s resilience. Our low-carbon growth has long been decoupled from resource use, setting the pace for a safe and sustainable global society.

This unique course is centered around the concept of Circular Economy that seeks to rebuild capital - whether this is financial, manufactured, human, social or natural - and fully respects the resources and ecological limits of our planet. To ensure sustainable growth, resources have to be used in a smarter, more sustainable way. Many natural resources are finite, an environmentally and economically sustainable way of using them must be found. No longer can we build our future on the linear ‘take-make-dispose’ model. Underpinned by a transition to renewable energy sources, the circular economy model builds economic, natural, and social capital on 3 principles: design out waste and pollution; keep products and materials in the circle; regenerate natural systems. Further, it represents a systemic shift that builds long-term resilience, generates business and economic opportunities, and provides environmental and societal benefits.

This course will have a special focus on the developments within the European Union, namely the 2018 Circular Economy Package and its underlying strategy and legislations.

This course is as important as valuable for students of ecology and environmental studies with an interest in EU policy affairs and covers following subjects: Economics; Business; Environmental Science; EU Policies.

CREDITS: 3 credits

CONTACT HOURS: 45 hours

LANGUAGE OF INSTRUCTION: English

PREREQUISITES: none

METHOD OF PRESENTATION:
A combination of methods will be applied, including:

- Lectures
- Class discussion of the required readings
- Student presentation of selected case studies
- Activity (Systems Dynamics)
- Field Trip/s
- Guest Speakers

The method of presentation is furthermore based on a team-approach with input from external experts for in-depth knowledge on various topics within the circular economy.

REQUIRED WORK AND FORM OF ASSESSMENT:
- Course Participation - 10%
- Midterm Exam - 30%
- Exploration Diary - 20%
- Final Exam - 40%
Course Participation and Attendance (10%)
Students will be expected to come to class prepared and to participate actively in class.

A Excellent participation
The student’s contributions reflect an active reading of the assigned bibliography. Skillfully synthesizes the main ideas of the readings and raises questions about the applications and implications of the material. Demonstrates, through questions and comments, that he or she has been capable of relating the main ideas in the readings to the other information discussed in the course, and with his or her own life experience. The student makes informed judgments about the readings and other ideas discussed in class, providing evidence and reasons. He/she respectfully states his/her reactions about other classmates’ opinions, and is capable of contributing to the inquiry spiral with other questions. The student gets fully involved in the completion of the class activities.

B Very good participation
The student’s contributions show that the assigned materials are usually read. Most of the time the main ideas are identified, even though sometimes it seems that applications and implications of the information read were not properly reflected upon. The student is able to construct over others’ contributions, but sometimes seems to interrupt the shared construction to go over tangents. He/she is respectful of others’ ideas. Regularly involved in the activities but occasionally loses concentration or energy.

C Regular participation
The participant evidences a regular reading of the bibliography, but in a superficial way. He/she tries to construct over others’ ideas, but commonly provides comments that indicate lack of preparation about the material. Frequently, contributions are shallow or unarticulated with the discussion in hand.

F Insufficient participation
Consistently, the participant reads in a shallow way or does not read at all. Does not participate in an informed way, and shows lack of interest in constructing over others’ ideas.

Mid-term Exam (30% split into paper: 20% and presentation: 10%)
The first part of the midterm exam is a written take-home paper of minimum 1,500 words (font size should be 12pt Times New Roman, double spaced). It must include, at least, 3 citation sources. The second part is a short presentation (visual/oral or oral only) of the findings, i.e. the outcomes of the written take-home paper, presented by the students in class. Details and scheme will be published by the instructor in advance.

Exploration Diary (20%)
Students are requested to keep record about their learnings, experiences and observations. They will be asked to keep an exploration diary by writing down their personal highlights of the course. This diary has to include classes 1-12 and be handed in before class 14. Minimum requirement is 3,000 words (font size should be 12pt Times New Roman, double spaced). Details and scheme will be published by the instructor in advance.

Final Exam (40%)
Topics and research questions will be proposed by the instructor in class 14. Based on classes 1-10 students will create their own circular economy business model for a chosen product or service. They will create a business canvas for this chosen product/service based on the ‘cradle-to-cradle’ concept, a sustainable business strategy that mimics the regenerative cycle of nature in which waste is reused. First part of the final paper will be this business canvas of minimum 3,000 words (font size should be 12pt Times New Roman, double spaced). Second part will be a presentation of the results of the research in class orally by each student. A visual presentation tool is required (PowerPoint, Prezi, etc.).
Students should learn the terms of various circular economy issues being used in the readings and in the class lectures. Students will get a collection of slides that contains the class lectures (printed copies handed out in class). Therefore, students are expected to attend class regularly and to participate in discussions. Also, students must complete reading assignment before class and come prepared to discuss the material.

Electronic devices (laptop, notebook, mobile phones etc.) can only be used for making notes and for discussion of the readings.

LEARNING OUTCOMES:

By the end of the course students will be able to:

- Explain the difference between linear and circular economy as well as infinite resources and planetary boundaries
- Understand the concept of circular economy in general and the European Union in particular
- Gain a detailed knowledge of circular economy and its building blocks and context, e.g. cradle-to-cradle
- Describe the European Union’s Circular Economy Package and the concept of shared/collaborative economy
- Get insight on specific areas of circular economy, like textiles, food & consumption I believe this is covered by the first learning outcome
- Design her/his own product or design, supported by experts and the business canvas
- Demonstrate a deep knowledge of circular economy in areas of plastics and modern agriculture, renewable energies and cities
- Acquire background and context knowledge about Sustainable Development and Systems Thinking, including a System Dynamic activity
- Discuss packaging design, Austrian specifics (e.g. plastic, bio economy, packaging guidelines) and policy making with guest speakers
- Get the occasion to visit 2 sites (waste incineration and smart city Vienna) on a 1-day field trip (applied science)
- Be able to work out extended case studies on complex topics
- Form their own opinion on different topics
- Improve academic research, writing skills and oral presentation

ATTENDANCE POLICY:

IES Vienna requires attendance at all class sessions, including field study excursions, internship meetings, scheduled rehearsals, and all tests and exams. Attendance will be taken for every class. If a student misses more than the equivalent of a week of classes without an excuse, the final grade will be reduced by one-third of a letter grade (for example, A- to B+) for every additional unexcused absence.

Excused absences are permitted only when:

1) a student is ill (health issues),
2) when class is held on a recognized religious holiday traditionally observed by the particular student, or
3) in the case of a grave incident affecting family members;
4) exceptions may be made for conflicting academic commitments, but only in writing and only well in advance of missed class time.

Any other absences are unexcused.

Missing Mandatory Field-trip Outside of Regular Class Hours

Some classes include mandatory trips outside of regular class hours, i.e. on weekends. Students will be made aware of the specific dates of such trips at the latest during the first week of class. Missing a mandatory field trip for reasons other than a health or medical emergency will automatically result in a reduction of the final grade by a third of a letter grade.

CONTENT:

<table>
<thead>
<tr>
<th>Week / Class</th>
<th>Content</th>
<th>Readings/Assignments</th>
</tr>
</thead>
</table>
Week 1

Class 1

Introduction to the course I
- Professor’s presentation of the course
- Expectations of students
- Learning Outcomes
- Introducing Circular Economy (CE)
- Infographic and video on CE for first discussion
- Concept

A framework for an economy that is restorative and regenerative by design:
- Design out waste and pollution
- Keep products and materials in use
- Regenerate natural systems
- Background and context: Schools of Thought

Schools of thought:
- Biomimicry
- Blue economy
- Cradle to cradle
- Industrial ecology
- Resource recovery
- Systems thinking
- The Biosphere Rules

Class 2

Introduction to the course II

The world’s resources are limited, but we are living as if they weren’t. Our economic system is based on taking precious resources from the natural environment, creating products with a built-in life-span and throwing them away to then buy new ones. This destructive system means that it now takes the earth 18 months to replenish the resources humanity consumes in a year. Our world is only 9% circular. Why?

- The Sharing Economy

European Union I

What is the EU doing in the field of Circular Economy? Are there progressive concepts or just more of the same? Bernhard’s insight of EU policies and legislation will offers a comprehensive insight.

- The Collaborative Economy concept of the European Union
- Circular Economy Package (CEP) EU
- Building Blocks (if time)

Building Blocks (no pre-reading) https://www.ellenmacarthurfoundation.org/circular-economy/concept/building-blocks.

Week 2

Class 3

European Union II

Interviewing classmates in order to know each other.

Trajectory: Where am I? - Where will I go? - What will I need?

Schools of thought:
- Biomimicry
- Blue economy
- Cradle to cradle
- Industrial ecology
- Resource recovery
- Systems thinking
- The Biosphere Rules

Building Blocks (no pre-reading) https://www.ellenmacarthurfoundation.org/circular-economy/concept/building-blocks.

- European Union, Plastics/Single Use Plastic. Available:
<table>
<thead>
<tr>
<th>Class 4</th>
<th>Exploring the circular economy (Topic 2)</th>
<th>Class 4</th>
<th>Exploring the circular economy (Topic 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare living systems with manmade systems; linear/materials economy; begin to investigate an alternative model: the circular economy.</td>
<td>If time, we will have a closer look at system dynamics and complexity as well as a system dynamics activity.</td>
<td>Compare living systems with manmade systems; linear/materials economy; begin to investigate an alternative model: the circular economy.</td>
<td>If time, we will have a closer look at system dynamics and complexity as well as a system dynamics activity.</td>
</tr>
<tr>
<td>Week 3</td>
<td>Exploring the circular economy (Topic 2)</td>
<td>Understanding the challenge of ‘finite’ resources (Topic 3)</td>
<td>Understanding the challenge of ‘finite’ resources (Topic 3)</td>
</tr>
<tr>
<td>Class 5</td>
<td>Exploring the circular economy (Topic 2)</td>
<td>Understanding the challenge of ‘finite’ resources (Topic 3)</td>
<td>Understanding the challenge of ‘finite’ resources (Topic 3)</td>
</tr>
<tr>
<td>Class 5</td>
<td>Understanding the challenge of ‘finite’ resources (Topic 3)</td>
<td>European Union III</td>
<td>European Union III</td>
</tr>
<tr>
<td>Understanding the challenge of ‘finite’ resources (Topic 3)</td>
<td>European Union III</td>
<td>Understanding the challenge of ‘finite’ resources (Topic 3)</td>
<td>European Union III</td>
</tr>
<tr>
<td>• Inspiring video about Lady Ellen Mac Arthur.</td>
<td>• Faced with a global scarcity of natural resources, ‘doing more with less’ has become the main challenge for producers and consumers. EU policies seek to improve the overall environmental performance of products throughout their life cycle, stimulate demand for better products and production technologies, and help consumers make informed choices.</td>
<td>• Understand the urgent challenge of finite resources; explore economic history since industrial revolution; evaluate our current consumption and production systems.</td>
<td>• Faced with a global scarcity of natural resources, ‘doing more with less’ has become the main challenge for producers and consumers. EU policies seek to improve the overall environmental performance of products throughout their life cycle, stimulate demand for better products and production technologies, and help consumers make informed choices.</td>
</tr>
</tbody>
</table>

Challenging common conceptions (Topic 1)

Looking at links between environmental and economic issues; begin to investigate a different way of approaching environmental, social and economic issues.

European Union III

Closer look at EU’s Sustainable consumption and production policy:

Faced with a global scarcity of natural resources, ‘doing more with less’ has become the main challenge for producers and consumers. EU policies seek to improve the overall environmental performance of products throughout their life cycle, stimulate demand for better products and production technologies, and help consumers make informed choices.

European Union III

European Union III

Watching 8 YouTube-videos on linear economy, recycling, use less, longer lasting products, more efficiency, green products, fewer people and how do other species live. Each video ends with a question. Students will prepare the questions and discuss it in class:

European Union III

European Union III

- System Dynamics Activity (no pre-reading) https://app.box.com/s/0c0dbj7fli0avhonxvq4weneiseor5lo

European Union III

<table>
<thead>
<tr>
<th>Class 6</th>
<th>Designing for a circular economy (Topic 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction of companies that have adopted the circular economy:</td>
</tr>
<tr>
<td></td>
<td>Can we design a product or service based on the circular economy?</td>
</tr>
</tbody>
</table>

Strategies and examples (I)

- **Examples:** Textiles, Fashion, Alternatives to petroleum-based packaging, Brownies, Jeans
- **Strategies:** Design/Buy/Make/Sell/Dispose/Finance

Students will prepare the 3 case studies and answer questions in class using a ‘think, pair, share’-approach to help collect responses from everyone in the room.

Students will choose one example and one strategy listed below and do a short presentation in class. The exact description of the task will be presented in week 5.

<table>
<thead>
<tr>
<th>Week 4</th>
<th>Strategies and examples (II)</th>
<th>Continuation of class 6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 7</td>
<td>The Circular Economy & Modern Agriculture (Topic 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understand the challenges around conventional monocultures and soil quality; challenges in modern agriculture and securing food supply for the future (see also class 5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>‘Sekem – Agriculture’ established biodynamic agriculture in Egypt; keeping high environmental, social, and sustainable standards</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ellen Mac Arthur Foundation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Watching videos before class and prepare sheet for discussion. This class includes a case study; learning activity and action exercises).</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Redesigning Plastics (Topic 6)</td>
<td></td>
</tr>
<tr>
<td>Class 9</td>
<td>Plastics have become an integral part of modern life, providing many benefits for consumers and producers. But what happens to our waste plastic? Where does it all end up? Is recycling plastics really that effective?</td>
<td></td>
</tr>
<tr>
<td>Class 10</td>
<td>Redesigning Plastics (Topic 6) (cont.)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NGO goes circular - Guest Speaker I</td>
<td>See class 9.</td>
</tr>
<tr>
<td></td>
<td>Ms Julika Dittrich is Program Manager of the circular economy projects of one of Austria’s leading environmental umbrella organisations, creator of the ‘Circular Futures’ platform and a leading expert on circular economy and system change. She will also have a focus on Austria’s implementation of EU legislation.</td>
<td>No Pre-Reading but repeat classes European Union I-III and The Ellen Mac Arthur Foundation, “Towards the Circular Economy” (Chapter 1-3, p. 13-62) (class 5)</td>
</tr>
<tr>
<td>Week 6</td>
<td>Midterm Paper and Presentation</td>
<td>Using a common household good, the students will demonstrate its optimum design regarding disassembly; easy repair; closing the materials loops; etc.</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Class 11</td>
<td></td>
<td>The first part of the midterm exam is a written report (take-home paper) of minimum 1,500 words (font size should be 12pt Times New Roman, double spaced). It must include, at least, 3 citation sources. The second part is a short presentation (visual/oral or oral only) of the outcomes of the written paper, presented by the students in class. Details and scheme will be published by the instructor in advance.</td>
</tr>
<tr>
<td>Week 7</td>
<td>Science goes circular - Guest Speaker II</td>
<td>No Pre-Reading but repeat class 6.</td>
</tr>
<tr>
<td>Class 14</td>
<td>Preparation for Final Exam</td>
<td>No pre-reading.</td>
</tr>
<tr>
<td>Class 15</td>
<td>From Waste to Energy – Applied Circular Economy Waste (Excursion I)</td>
<td>No pre-reading.</td>
</tr>
<tr>
<td>Class 16</td>
<td>From Vienna to smart city Aspern – Applied Circular Economy Cities (Excursion II)</td>
<td>No pre-reading but repeat class 11.</td>
</tr>
</tbody>
</table>
smart city with a heart (a lake), designed to accommodate the whole spectrum of life. Built on a foundation of innovative concepts and forward-looking ideas, this city-within-a-city combines high quality of life with economic drive.

Week 9 Class 17

Renewable Energies & Energy Efficiency
The idea of a circular economy is a substantial shift to renewables and energy efficiency – also a consequence of designing products for longer life and as a service, where appropriate.

Class 18

Agenda 2030 and its Sustainable Development Goals/SDGs
Showing the link between UN’s Sustainable Development Goals and Circular Economy

- Geissdoerfer, Martin; Savaget, Paulo; Bocken, Nancy M. P.; Hultink, Erik Jan (2017-02-01) "The Circular Economy – A new sustainability paradigm?" Journal of Cleaner Production. 143: 757–768

Week 10 Class 19

Final Presentation I

Class 20

Final Presentation II

COURSE-RELATED TRIPS:
A one-day field trip to 2 different sites in/around Vienna will be organized during week 8 as part of the course:
- Vienna Energy
- Seestadt Aspern

REQUIRED READINGS:
REQUIRED READINGS:

- ----, “Towards the Circular Economy” https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf. (please note: this publication is the main source of information for students and the standard reference for this course)

Filmography/Videos:

RECOMMENDED READINGS:

